Infinite horizon optimal control of forward-backward stochastic differential equations with delay

نویسندگان

  • Nacira Agram
  • Bernt Øksendal
چکیده

We consider a problem of optimal control of an infinite horizon system governed by forward-backward stochastic differential equations with delay. Sufficient and necessary maximum principles for optimal control under partial information in infinite horizon are derived. We illustrate our results by an application to a problem of optimal consumption with respect to recursive utility from a cash flow with delay.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Delayed Stochastic Linear-Quadratic Control Problem and Related Applications

We discuss a quadratic criterion optimal control problem for stochastic linear system with delay in both state and control variables. This problem will lead to a kind of generalized forward-backward stochastic differential equations FBSDEs with Itô’s stochastic delay equations as forward equations and anticipated backward stochastic differential equations as backward equations. Especially, we p...

متن کامل

Pathwise Random Periodic Solutions of Stochastic Differential Equations

In this paper, we study the existence of random periodic solutions for semilinear stochastic differential equations. We identify them as the solutions of coupled forward-backward infinite horizon stochastic integral equations in general cases. We then use the argument of the relative compactness of Wiener-Sobolev spaces in C([0, T ], L(Ω)) and generalized Schauder’s fixed point theorem to prove...

متن کامل

On the Backward Stochastic Riccati Equation in Infinite Dimensions

We study backward stochastic Riccati equations (BSREs) arising in quadratic optimal control problems with infinite dimensional stochastic differential state equations. We allow the coefficients, both in the state equation and in the cost, to be random. In such a context BSREs are backward stochastic differential equations living in a non-Hilbert space and involving quadratic non-linearities. We...

متن کامل

Infinite horizon backward stochastic differential equation and exponential convergence index assignment of stochastic control systems

This paper studies exponential convergence index assignment of stochastic control systems from the viewpoint of backward stochastic di'erential equation. Like deterministic control systems, it is shown that the exact controllability of an open-loop stochastic system is equivalent to the possibility of assigning an arbitrary exponential convergence index to the solution of the closed-loop stocha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 259  شماره 

صفحات  -

تاریخ انتشار 2014